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SUMMARY 

The problems of the flow of a viscous fluid past a micropolar fluid sphere and the flow of a micropolar fluid 
past a viscous fluid drop are discussed. The expressions for the stream functions, velocities, spins and the drag 
are obtained in each case and are compared with the classical (viscous fluid past a viscous fluid sphere) 
results. It is found that the viscosity ratios and the parameter s, which arises in connection with the boundary 
condition, have significant effect upon the drag on the sphere in each case. 

1. Introduction 

In the recent years considerable attention has been given to fluid mechanical theories in which 

the couple stress, in addition to the traditional Cauchy stress, and the spin of  the fluid particle, 

in addition to the usual velocity vector, play a significant role. These fluids have been suggested 

to describe the complex behaviour of  such materials as liquid crystals, fluid suspensions and the 

blood flow. Eringen [1] has introduced a theory for such fluids, which are called by him 

micropolar fluids, in which the fluid can support stress and body couples and possess a rotation 

field which is independent of  the velocity field. The theory, thus, has two independent kine- 

matical variables: the velocity vector oi and the spin or microrotation vector oi. The linear 

constitutive equation for the stress contains an additional material coefficient, which describes 

the coupling between vi and o i. Also the linear equation for the couple stress contains three 

additional viscosity coefficients. 

In the present paper we consider the two related problems of  the flow of a viscous fluid past 

a fluid sphere which has a micropolar fluid inside it and the flow of  a micropolar fluid flow past 

a viscous fluid sphere. It is assumed that the fluid spheres, in each case, remain spherical 

permanently. This problem of the translation of a viscous fluid drop in another viscous fluid 

was first considered by Rybczynski [2] and Hadamard [3] and is treated by Happel and Bren- 

ner [4] in their monograph. We shall follow the notations of [4] as much as possible. Ramkis- 

soon and Majumdar [5] have studied the flow of  a micropolar fluid past a solid sphere while 

Avudainayagam [6] has obtained the effective viscosity of a dilute suspension of  micropolar 

fluid drops in a viscous fluid without explicitly calculating velocity, pressure etc. In this paper 
we determine velocity, spin, drag etc., in both the cases and compare them with the classical 

values. It is found that, as expected, the viscosity ratio and the parameter s, which appears in a 

compromise boundary condition, relating the spin of  the particle with the vorticity of  the fluid, 

have significant effects in the physical quantities of interest. 
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2. Basic equations 

Neglecting the thermal effects and assuming the fluid to be incompressible with isotropic 
microstructure, the equations of continuity and the momenta, for a micropolar fluid, are given 
as [1]: 

v~i = O, 

(K + la)vi, H + KeilkOk, j -- p, i  + Pfi = Pvi, 

(a +/3)o],i] + 3"oi,/i + Keijkvk, ] -- 2KO i + pC i = pI(r i. 

(1) 

(2) 

(3) 

Here vi is the velocity, oi the spin vector, cO. k the permutation tensor, p the pressure, j] the 
body force, Ci the body couple, p the mass density and I is the local micro-inertia. The 

quantities/a, K, t~, 13 and 3' are viscosity coefficients and are all assumed to be constant. Also a 
dot signifies material differentiation and the comma denotes partial differentiation with respect 
to a space coordinate. 

The constitutive equation for the stress tensor tkQ and the couple stress tensor mk~ are given 

as 

tk~ = --P~k~ + la(vk, ~ + v~,k)  + K(V~,k -- e k~mam) ,  (4) 

mk~ = aap, p6g~ +/3ak, ~ + 3"O~,k. (5) 

Furthermore the requirement that the energy dissipation be nonnegative implies that: 

2/a+K~>O, K>~O, 3~+/3+3'~>0, 3'~>0, 3'~>1/31. (6) 

3. Micropolar fluid drop in a viscous fluid 

We shall first consider the problem of a micropolar fluid sphere in the steady flow of a viscous 
fluid. We assume that the fluid sphere is at rest while the viscous fluid streams past it with 
uniform velocity U. 

It is convenient to work with the spherical polar coordinates (r,O,qb) with the origin being the 

drop centre and with the 0 = 0 axis being taken in the direction of the free stream flow. Since 
the fluid sphere is assumed to maintain the spherical shape permanently, the flow both inside as 
well as outside of the sphere can be assumed axisymmetrical. Accordingly for the motion inside 
the drop we take 

vt = (v , ,o00) ,  oi = ( 0 , 0 , % ) .  (7)  
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For the motion of the viscous fluid outside the drop we shall adopt the known solution [4] 
with the appropriate boundary conditions. Following [4] we introduce the stream function 

such that 

1 a~b 1 a~b (8)  
v r - -  r2sin0 b0 ' VO-rsin----O 3r " 

When equations (7) and (8) are employed in equations (2) and (3) respectively and the inertia 
terms are neglected, we obtain (cf. [5]) 

E4(E 2 _ ~2)~ = 0, 

2rsinOa~=( E2+ "/(J'/+ K" '---~)E4 ) / ~ 2  ¢' 

where 6 is of dimension (length) -1 , defined as 

and 

E2=  ~._.~_ 2 sin0 ~ ( 1 a ) 
ar 2 + r "-S- O-"0 sin0 a0 " 

In order to solve (9), we note that, since the operators are commutative, we can write 

~ = ~  + ~  

where 

(9)  

(10) 

and 

(11) 

(12) 

(13) 

E4 ffl = 0 (14) 

(E 2 - 62)~k2 = 0. (15)  

The solution for ~bl, suitable for the present purpose (cf. [4]), is given as 

~ =  ( -~  +B,r+C, r2 +D,r 4) sin20 (16) 

In order to solve (15) we write ¢2 =f(r)sin20 and make a change of variable f =  x/v--g where v = 
6r, to obtain 

(17) v2g  " + vg' - (v  ~ + ~ ) g  = o. 

Here the dashes denote differentiation with respect to v. The solution of (17) is 
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g = A 2 I3/2 (V) + B21- ¥2 (v), 

where I(v) is the modified Bessel function of the first kind. Hence 

42 = X/~ [A213# (6r) + B2L3/2(6r)] sin 20. (18) 

However, since 

i3/2(v) = V~v ( coshv _ __sinhv ) 
l) 

La/2(v)= ] /~v  (sinhv - c°sh-------~v ) 
v 

we can rewrite (18)in one of the following forms: 

or 

~o2= V ~  A2 -  ~r ) c°sh6r+ - '~r ) sinh6r sin20 (19) 

~k2 = 2 1 - ~r e~r + D2 1 + ~r e-Sr sin20" (20) 

Thus on combining (16) and (20) we have the solution for the stream function ff as: 

6r + 2! r+ 

+ { 3 'Cl+ 262(C23, +D2)} r2 +D,r '  + n=3 ~ (C2 +(-1)nD2)n6nrn~~_+~.r ~ sin20. (21) 

The requirement that the velocities remain finite at the origin implies that 

52 
5A~ =6"2-D2, B, = - - ~  Aa. (22) 

Also the non-zero component of the spin, o,~, then reduces to 

aa, = I(2V7+ r) { 6Ax ( _  16r 2 + ~o "(2m+l)62m+lr2m)(2rn + 2), 

2m62mr2m-I t r l +G1 ~ +5D1 sin0, (23) l (2m + 1)! 

where G1 = C2 + D2. Moreover the requirement that tl~ should remain finite at r = 0 implies 
that 

A1 = B1 = 0, C2 = D2. (24) 
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Thus the stream function, the velocity components, the spin component and the tangential 
stress for the micropolar fluid inside the fluid sphere are given as: 

~ =IC~r2+Dlr4+2C2(c°sh (Sr ) -  sinh(fr) ) 1 _  6r sin 20, 

g.)r 

IC  (cosh(Sr)  
= - 2  i + D1 r 2 + 2C2 r2 

vo 

= FSD1 r + oq~ 
L_ 

sinh(Sr))  1 
r3 cosO, 

' = 2 1 + 2D1 r = + C= r= + 6 r  3 (25) 

2(P +g) 62C2 ( cosh(6r) sinh(fr) 1 
- -  - - -  sin0, 

r 6r 2 

I 3 t 3 ( 8~r2 +3) t l  trO = (2p + g)sin0 D lr + 2C: 7~ cosh(6r) - 5r 2 sinh(6r) . 

For the slow motion of the viscous fluid outside the sphere, we adopt the known solution as 
[ 4 ] :  

- I~.~o U r2 ~2 = + Bor + 
i___ 

Moreover, we also obtain 

(Ao ) - -  + Bor + Co r2 +Do r4 sin20, 
tp= r 

U r2 which on the requirement that ~ -~ ~- sin20 as r ~ oo reduces to 

l sin 0. 

2Bo  7r =-- F 2A° + - -  + COS0, 
L F3 r 

(26) 

(27) 

I Ao Bo U I  
v-'° = -~ -  + - - r  + sin0, ( 2 8 )  

6ffAo 
Tr0 - r4 sin0. 

Here, we have used bars to denote the quantities for the viscous fluid outside the sphere. 
We now proceed to determine the remaining arbitrary constants C1, D1, C2, Ao and Bo by 

employing the following boundary conditions in equations (25) and (28): 
(i) The fluid is impenetrable at the surface of the sphere r = a, i.e. Vr = 0, and b- r = 0 at r = a. 
(ii) The tangential velocity is continuous at the interface, i.e. v o =-f0 at r = a. 
(iii) The tangential stress is continuous across the boundary r = a, i .e.  trOlr=a = TrO Ir=a" 

(iv) The spin vorticity relation at the interface is given by O¢[r= a = S~Olr=a, 0 < s < 1, 
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where ~V is the vorticity component of the viscous fluid outside the drop. 
As a result of the application of these conditions, we obtain 

CI +a2D! + 2  (Sacosh(Sa)-sinh(Sa)sa s ) C 2  =0 ,  

2Ao + 2a2Bo = -Ua 3, 

Ao Bo 
- - -  + - -  - 2C1-  4a2 DI + a 3 a 

2 ~ 8a cosh ( S a ) -  (1 + 82a 2) sinh (Sa) + C2 [ 8a 3 / 

6FAo - 3(2ta + K)aSDl - 

- 2 ( 2 p + r )  { 38a cosh (Sa)-  (3 + 8'a')  sinh } C2 = - U ,  

5aSD1 + 28(# + r )  {Sa cosh (Sa) - s inh(6a)}G = -sBo. 

The solution of  the system of  equations (29) is given as: 

L 5 {  8 ' a  2 } 
Ao - 2(1 +)`1) + 2(1 +)`1""~) ( M - N ) -  ~ N C,, 

R. Niefer and P. N. Kaloni 

(29) 

(3 + 2)`1) L 
Bo = 2(1 +)`1) a 2 

5 t }c, 
2(1+)`1)  ( M - N ) - T  N --~ , 

-Xl  L 1 
Cl - 2(1+)`t)  a s - 2(1 +)`1) 5),1 (M - N)  

(3)`1 2) 

3 
82a2N ~ ' 

(30) 

)`1 L 
D1 - 2(1 + )`1 ) a s 

where 

2> { }c, 
+ ~-~+-~-~ ( M - N ) - - - ~ -  N - ~ ,  

L UaS 2 M = a cosh (6a), N = sinh (8a) 2~ (31) 
- -  ' 8 , )`1 - (2p + K) ' 

m 

C2 = 2C2 = 
3K [3s + 2(s - 5))`1 ] L 

5t¢ [3)`1 -- (2 + s)] {3(M - N) - 82a2N} + [6(1 + )`l )(P + K)(M - N)62a 2 ] 

We point out that the first term on the right hand side, for each of  Ao, Bo, C1 and DI ,  is 
essentially the same as in the case of the drop of a viscous fluid (cf[4]) .  The other terms related 
to C2 are due to the presence of the spin in the micropolar fluid. As expected, these terms 
systematically disappear in the limit as ~ and or 7 tend to zero. Because of  the axisymmetrical 
nature of the flow assumed and because of the similar dependence of the 0 coordinate terms in 
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both the classical (when the fluid inside the drop is viscous) and in the present case, the overall 
pattern of the stream lines appears similar in both the cases. In particular, the circulation within 
the droplet, as is observed in the classical case, is also predicted in the present situation. The 
difference in the present case is, however, that stream-lines are displaced towards or away from 
the origin depending upon the magnitudes of s and X~. Similar remarks apply for the stream 
lines outside of the sphere. 

We next calculate the drag on the sphere by using the standard integral formula 

D= 2rra 2 : :  (trrcosO - trosinO) [r=a sin0 dO. (32) 

Upon calculating trr and tro with the use of equations (4), (25), (28) and (30) we finally obtain 

I 1  + ]Xl-~ 6~a~U 
/ ) : - 6 r r f f a U  l+X-~l ~ (1 +X,) × 

I ts + ](s - 5)x~ } {3(M- N) - ~2:N} ] 
x 6 ~ . (33) 

{3~k 1 - -  (2 + s) <3(M - N)  - 82a2N} + {~ Oa + k) (1 + XI )/k} 

If we denote by/71 the classicial drag (i.e. the drag in the case of a viscous fluid drop) as given 
in [4], 

2 
(1 -t" "~k 1 ) 

D1 = - 6npaU (1 + ~-1) ' 

then the above expression can be rewritten as 

~3~', + 2)(27', - 3)1 5k - [3(M - N)  - 82a2N] + [6(1 + X1)~ + t<)(M- N)82a z ] 
(2~.1 + 3) 

D1 5k[3~1 - ( 2  + s ) ] [ 3 ( M - N ) - 8 2 4 2 N ] + [ 6 ( 1  +XI)Oa+K)(M-N)82a 2] 
(34) 

From equation (34) we note that D/D1, apart from the other quantities, depends significantly 
upon the values of hi and s. It is seen that for large values o f ~  i.e. when X1 > .375 and for all 
values of s e [0,1], D/D1 < 1. However, when X1 < .375 there is a small region where D/DI > 1 
is possible for different values of s. In particular we note that for values close to 1 for s and for 
smaller values of XI (.01 < 1 < .37), D/D1 is greater than one. Thus we conclude that when the 
fluid inside the sphere is a micropolar fluid then the drag on the sphere is, in general, smaller as 
compared to when the droplet is filled with a viscous fluid. However, for certain values of s and 
~ ,  the drag on the sphere filled with the micropolar fluid could be larger than that in the case 
of the viscous fluid. 

4. Viscous drop in a micropolar fluid 

We shall now consider the problem when the fluid inside the drop is a viscous fluid while the 
fluid streaming past the sphere is a micropolar fluid. If, as before, we assume that the fluid 
sphere maintains the spherical shape permanently, then the general solutions obtained in the 
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previous section can be adapted with the slight modifications of the appropriate boundary 
conditions. Thus for the motion of the viscous fluid inside the drop we again assume: 

~(i)= I-~ -~ +B4r+C4r2 +D4r41sin20, 

which, upon the requirement that velocities be finite at the centre of the droplet, reduces to 

if(i) = [C4r 2 +Dar 4 ] sin:0, 

v~ i) = - 2cos0 [D4r 2 + C4 ], 

V(o i) = sin0 [4D4r 2 + 2C4], 
(35) 

t~  ) =sinO [612(i)D4r]. 

Similarly for the slow motion of the micropolar fluid outside the sphere we write the expres- 
sion for the stream function, using equations (16) and (20), as 

4 (0) = +B3r+C3r 2 +D3r 4 +E3 1 - 5'r 

- -  sin 20. (36) + F3 1 + r6' 

4 ( 0 )  Since 4 (°) -+ -~ Ur2 sin20 as r ~ ~ ,  we find D3 = E3 = 0 and C3 = i U. Hence and o (°) now 
reduce to 

- -  sinZ0, (37) 4 (0) = +B3r+ -~r +F3 1 + r5' 

I -B3-~- + F3 ( / a '  + K' ) 6 '  { 1 +r6' ~ ~  r2 e -rS'l sin0. (38) O(00) = 

The other components of interests can now be written as 

A~r3 B3 U f l + r 6 '  t l = - -  + + F3 e -r~' v~ °) - 2 c o s 0  + r ~ r36 ' ' 

I - A 3  B3 ~ 3+r"+r26' t  l (39) V(o °) = sinO --~ + -7 +U- F3 ---- e -rS' r4~¢ 

t(O)=2(l~'+K') sinO F 3 A 3 r o  [_7- +F3 t r25'2+36'r'+3 t l e  -r~' r4~t 

We may point out that we have used the superscripts i and 0, respectively, for the quantities 
inside and outside of the drop. Also the dashes have been added to the material coefficients of 
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the micropolar fluid in order to distinguish them from the material coefficients of the previous 
section. The first three boundary conditions, (i)-(iii), employed in the previous section are 
applicable in the present case also. These lead to the following set of four simultaneous equa- 
tions: 

C4 +a2D4 = 0 ,  

A3 +a2B3 +F3 ( 1 + a6' e_aS') U 5, = - - -~  a3 , 

_A3 +a2B3 _ F3 ( l +a6'+a26'2 ) ' 6' e-a~ = -Ua3 + 2C4a3 + 4a3D4' (40) 

t ~t2a 2 
3A3 + F3 6' 

The solution of (40) is 

L { 6' 
A 3 -  2(1+X2) 1 + + 

t id(i)aD4 + 36'a + 3 e -a& = 6 2(/~' + k') " 

3 + 2~k 2 a26 '2 I. 
6(1 + X2) ] G3, 

- (3+2X2) L 3+2X2 
B3 - 2(1 + )k2) a 2 + 6(1 + X2) 6'2G3' 

-X2 L X2 ~,2 
(74 - 2 ( I+k2)  a 3 + 6(1+3.:) a G3, (41) 

X2 L X2 6 'z 
D4 - 2(1 +),2) a s 6(1 + X2) a 3 G3, 

where 

' F3 K'(2g' + K') 
L - Ua3 ~k 2 - -  2#' +K , G 3  _ 6 ,  2 = 

2 ' 2/.l(0 6'e aS' ' 7'(/a' + ~:') 

The final boundary condition, involving the spin-vorticity relation, is taken as 

(42) 

o(O)lr=a = S~ (i) 0 < S < 1, dp r=a ' 

On using (35) and (38) the above condition reduces to 

-B3 + ~,2Q/, +K') (1 +a6')G3 = 5a3sD~ 
f K 

which, upon the substitution of the values of D4 and B3 from equation (41) gives 

G 3 = 

I 3K'{3 + (2 -- 5S)X2 } ] L 

{3 + (2 - 5s)X2 }K' - {6(1 + X2)(/a' + K')(1 + a6')} [ a26 '2 " 

(43) 

(44) 
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It can be observed, from equations (35), (37), (41) and (44) that, in the present case also, the 
general features of the stream-lines, both inside and outside the drop, are similar to those ob- 
served in the classical case. The presence of the micropolar fluid outside the drop changes the 
stream-lines inside the drop slightly. However, circulation inside the droplet is predicted in 

the present case also. We point out that when r -+ 0, the above results reduce to the classical 
case [4], while when ?̀ 2 -+ 0 (i.e. when the sphere is considered solid) the above expressions 
reduce to those given by Ramkissoon and Majumdar [5]. 

The calculation of the drag on the fluid sphere can be carried out in exactly the same 

manner as in the previous section. After using formula (32) and simplifying we get 

= -  + a v [  × 

E 6(1 + X2)(p' + K')(1 + aS') 1 
x 6(1 +?`2)(~' +K')(1 + a S ' ) - K ' { 3 + ( 2 - 5 s ) ? , 2 }  " (45) 

If, as before, we define the classical drag by D, ,  we then have 

D___2~ I 6(1 + X2)(p' + K')(1 + a~') l (46) 
Dl 6(1 +?`2)~'+K')(1 + a S ' ) - K ' { 3 + ( 2 - 5 s ) ? ` 2 }  " 

From equation (46) we observe that D2/D ~ > 1 when s is small i.e. when s <_ .5, for all values of ?`2- 
However, for values of s closer to one and ?̀ 2 > 1 there is a region where D2/D1 < 1. Moreover 

for ?̀ 2 < 1 and for all values of s we again find D2/D~ > 1. Thus for higher values of ?`2, ifs is 
closer to one we have D2/D, < 1 while ifs is closer to zero we have D2/D,  > 1. We, therefore, 
conclude that the drag on a viscous sphere moving in a micropolar fluid depends strongly upon 
the magnitude of the viscosity ratio ?,2, and the parameter s. Depending upon the values of s 
and ?`2, it could be greater or lesser as compared to the classical drag. This result is slightly 
different from the result of the drag on a solid sphere moving in a micropolar fluid in which case 
the drag is found to be always greater than the classical drag (cf. [5]). 
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